北京大学 - 《北京大学校报》
王爱民-陈良怡课题组发明贝赛尔三光子显微脑成像技术
北大信息科学技术学院和区域光纤通信网与新型光通信系统国家重点实验室的王爱民副教授课题组与分子医学研究所的陈良怡教授课题组合作发明了一种基于贝赛尔光束的新型三光子显微镜,可用于稀疏标记样本的快速深层活体三维脑成像。其成像技术已得到国家重大科研仪器设备研制专项资助。
本报讯 北大信息科学技术学院、区域光纤通信网与新型光通信系统国家重点实验室王爱民副教授课题组与分子医学研究所陈良怡教授课题组合作,发明了一种基于贝赛尔光束的新型三光子显微镜(Bessel-Beam three-photon microscopy)。此显微镜成功实现针对稀疏标记的样本进行快速深层活体三维脑成像的研究。成果近日以《快速体成像贝赛尔光束三光子显微镜》为题,在线发表于《生物医学光学快报》(Biomedical Optics Express)。
利用光学成像技术在活体上观察组织和细胞内的动态过程,是研究生物医学问题的关键手段之一。三光子显微镜,对常用绿色及红色荧光蛋白的激发波长与双光子相比更长,且正好处于生物组织的最佳红外通光窗口(1.3 μm和1.7 μm),具有更好的光学穿透效果。此外,作为更高阶的非线性效应,三光子显微成像相比双光子能明显提高信号背景比。目前,三光子可以在实现组织1.7 mm深度左右的无损高分辨率成像,从而观察小鼠大脑皮层下海马区的结构和功能。
多光子显微系统一般采用“点扫描”的方式进行成像,本身极大限制了其三维体成像速度。本工作使用z轴方向拉伸的贝赛尔光进行“光柱扫描”成像,针对稀疏标记生物样本的三光子三维体成像的速度可以提高10倍或更高,从而更清楚地解析大脑神经信号处理中的四维时空过程。
贝赛尔光方法虽然已于双光子显微成像中得到应用,但其旁瓣效应大大降低了成像质量。由于三光子激发为更高阶的非线性效应,旁瓣效应得到有效抑制,贝赛尔光与三光子成像相结合可将两者的优势获得最大的发挥。其成像不仅仅比双光子更深,即使是同样深度的情况下也可以得到比双光子贝赛尔显微镜更高分辨率和对比度的荧光图像。研发团队在果蝇、斑马鱼及小鼠大脑上充分证实了利用这一成像技术的优势。
相关工作得到国家重大科研仪器设备研制专项资助。这也是该项目组继成功研制双光子光片显微镜(高速活体)、2.2 g微型化双光子显微镜(活体可佩带)、超分辨显微镜(高分辨活体)之后,在突破活体生物成像深度方面取得的重要研究成果。
(信息科学技术学院)