本报讯(通讯员王赠霖)近日,农学院教授吕新团队在基于无人机 RGB 图像进行机采棉脱叶效果监测及综合评价方面取得重要研究进展,研究成果发表在欧洲农学学会的官方期刊《欧洲农学杂志(European Jour-nal of Agronomy)》上。
喷施脱叶剂是棉花机械采收前的关键步骤,脱叶效果是决定棉花最佳采收时间的关键因素,不适宜的机采时间会降低棉花的产量和品质。因此,快速准确地估计脱叶率和吐絮率是评价机采棉脱叶效果的关键。本研究旨在利用无人机获取高分辨率 RGB图像,利用相关系数(Cor)、最大信息系数(MIC)和随机森林(RF)筛选可见光植被指数、色彩空间参数和纹理特征。采用多元逐步回归(MSR)、核脊回归(KRR)、极限学习机(ELM)和粒子群优化极限学习机(PSO-ELM)算法构建机采棉的脱叶率和吐絮率监测模型。利用主成分分析算法,构建了落叶效应综合评价指标,其结果在判断采收时间方面具有一定潜力,可为规模化生产条件下机采棉采收时间的精准评估提供方法支撑。
该团队致力于棉花表型监测与智慧管理的研究与应用工作,该研究得到了国家自然科学基金、自治区“天山英才”等项目的资助。